+7 (495) 647-79-79

МЕНЮ

Поиск

каталог

HWS HD Серия источников питания TDK-Lambda

HWS HD Серия источников питания TDK-Lambda
Производитель
Гарантия
12 месяцев
(если иной срок не предусмотрен производителем)
Требуется уточнить цену
В корзину
Купить в один клик
Заказать поверку/калибровку
Задать вопрос
  • Информация о товаре
  • Технические характеристики
  • Комплект поставки
  • Аналоги
  • Оплата и доставка

Описание:

Выпуск источников питания серии HWS японское подразделение корпорации TDK-Lambda начало в 2003 г. в ответ на потребность рынка в компактных промышленных источниках питания разных номиналов, имеющих высокий запас надежности. Серия HWS сегодня — это линейка источников питания с широким диапазоном мощностей (15…1800 Вт) стандартного промышленного ряда напряжений, которая продолжает расширяться. Так, в 2005 г. появились модели HWS80, HWS300, HWS600 и HWS1500, в середине 2007 г. появилась линейка с трехфазным входом HWS1800T, а в конце 2007 г. — источник питания мощностью 1000 Вт.

Для удобства использования и расширения сфер применения (кроме установки на шасси) приборы этой серии без каких-либо трудностей могут быть установлены на DIN-рейку. Для этого можно заказать специальные держатели (DIN-rail bracket). Предлагаются держатели трех типоразмеров. Для крепления приборов серий HWS15 и HWS30 применяется держатель типоразмера DIN-01; HWS50 — DIN-02; HWS80, HWS100 и HWS150 — DIN-03. Прибор жестко закрепляется в держателе, а затем устанавливается на DIN-рейку (см. рис. 2).

Особенности работы HWS/HD

Поиск и выбор источника питания для жестких условий эксплуатации — актуальная проблема для любого российского разработчика, когда-либо занимавшегося проектированием аппаратуры для использования в неотапливаемых помещениях и на улице. В техническом описании подсемейства HWS/HD заявлен гарантированный старт при температуре –40°С, а рабочий диапазон температур составляет –10...85°С. Чтобы получить точное представление об особенностях запуска моделей при низких температурах, необходимо внимательно ознакомиться с имеющейся в техническом описании диаграммой пуска, представленной для каждой линейки. В качестве примера на рисунке 3 представлена кривая запуска для моделей линейки HWS100HD.

При минимальном напряжении входа и температуре –40°С источник стабильно запускается при нагрузке 30%. Если напряжение входа 170 В и выше, то старт можно произвести при выходном токе 50% от максимального. При этом некоторые рабочие параметры могут отличаться от заявленных. Например, выходные пульсации. При низкой температуре ESR (эквивалентная резистивная составляющая) электролитных конденсаторов, используемых в выходном фильтре, растет, вследствие чего растет и значение двойной амплитуды пульсаций на выходе. Время запуска также может увеличиться, особенно если преобразователь пускается под нагрузкой. Это связано с тем, что ESR входных конденсаторов также увеличивается и напряжение на них может падать, не успевая нарасти достаточно быстро, особенно в моделях, где для ограничения пус­кового тока применяются термисторы — элементы с обратным температурным коэффициентом. При низких температурах термистор ограничивает ток сверх меры. В более мощных моделях HWS (от 300 Вт и выше) для ограничения пускового тока используется схема, основанная на тиристоре (SCR) (см. рис. 4).

Во время начального броска тока в этой схеме накапливается уровень напряжения (около 1…2 В), достаточный для подачи сигнала-триггера на управляющий вывод тиристора. И на это время, длящееся около 10 мс, тиристор запирается, увеличивая свое сопротивление в десятки раз. После этого он ведет себя как последовательно включенный в цепь дополнительный диод. К сожалению, использование такой же схемы в моделях ниже 300 Вт нецелесообразно с точки зрения КПД.
После запуска начинается прогрев элементов, который может длиться от нескольких десятков секунд до 3 мин. Это зависит от монтажа и расположения источника в пространстве (вертикального или горизонтального), наличия другого тепловыделяющего оборудования, от вида охлаждения (конвекционное или принудительное). После этого периода источник выходит «на полную спецификацию», когда все его параметры приходят в норму, и он может отдавать нагрузке 60—70% мощности в зависимости от уровня входного напряжения. При температуре от –10°С и выше можно подключать максимальную нагрузку. При температуре, превышающей 50°С, начинается определенное снижение мощности, которое зависит от конкретной модели.
На рисунке 5 изображены скриншоты показаний осциллографа во время запуска модели HWS150HD при температуре –40°С и минимальном входном напряжении: а) холостой запуск (без нагрузки) — источник запускается стабильно; б) при нагрузке 100% — источник запускается нестабильно. Как видно из этого примера, на практике источник стартует и при полной нагрузке, но в ряде случаев пуск срывается, поэтому в спецификации заявлены более жесткие условия запуска.

ИП серии HWS/HD отличаются также тем, что их печатные платы имеют защитное покрытие Conformal Coating. Этот материал нанесен тонким слоем (в несколько десятков микрон) на печатную плату и другие компоненты, находящиеся на ней. Он защищает плату от влажности и загрязняющих примесей и таким образом предотвращает короткие замыкания, коррозию проводников и «точек соединения». Наносится покрытие обычно погружением в ванну, распылением или методом потока. На заводax TDK-Lambda практикуется в основном второй метод. В качестве материала используется лак DС1-2577 компании Dow Corning (США). Это полупрозрачный нерастворяющийся материал, основу которого составляет кремниевая смола. Более подробно его характеристики представлены в таблице 2.

Время просушки определяет, насколько быстро будет идти производственный процесс. Материал DС1-2577 — не самый быстросохнущий, поэтому для ускорения процесса используется особый температурный режим. Содержание нелетучих соединений — также важный параметр, т.к. он определяет расход материала. Если этот параметр находится на уровне 100%, то защитный слой не оседает и после просушки толщина покрытия остается такой же, как и при нанесении. Такие материалы действительно су­ществуют. Тот же производитель выпускает лак марки DС3-1953, который отличается 100%-ой нелетучестью, но при этом в 2,5 раза дороже и уступает по своим ди­электрическим свойствам DС1-2577. В качестве защитного материала могут использоваться также HumiSeal 1A27NS и HumiSeal 1B73 компании Chase Corporation.

Некоторые химические составляющие, такие как толуол, при контакте с резиновой вставкой электролитических конденсаторов могут повлиять на их работоспособность. Поэтому важно выбрать правильную последовательность операций при производстве либо применять специальные прокладки-спейсеры, которые помещаются под основания конденсаторов. Крупные внешние элементы HWS также монтируются после нанесения защитного слоя. Дело в том, что температурное сопротивление слоя намного выше, чем у воздуха, поэтому процесс охлаждения таких элементов, если их покрыть, будет затруднен.

Применение защитного покрытия печатных плат еще более расширяет сферу и условия применения источников питания HWS: они могут успешно эксплуатироваться на промышленных объектах с повышенным содержанием пыли в воздухе, а также в районах повышенной влажности и в условиях морских ветров, содержащих и влагу, и соль. Источники TDK-Lambda с покрытием Conformal Coating уже используются в светодиодных вывесках на морском берегу.

Выбор марки
 
Рекомендуем посмотреть: HWS ME Серия источников питания TDK-Lambda